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Talk outline

• Brief summary of the electric  system infrastructure 
evolution

• Demand characterization as the key to architecture 
choice and its evolution

• The need for systemic technological and regulatory 
approach  in the electricity sector

• Examples of several layer schemas and their  
technological, regulatory and economic 
characterization

• Layer schema as a complex dynamic system
• Hidden opportunism
• Dynamic Energy Control Protocols (DECP)  as a 

means of managing opportunism



Brief summary of the electric  system 
infrastructure evolution

• Historically, neither regulated nor liberalized electricity  
system was designed at one stage with well-
defined/understood  objectives. 

• Technologically, the system has evolved in a mushroom-
type manner driven by the  load demand needs. 

• Institutionally,  governance has evolved to accommodate 
the load demand needs as well (private or publicly owned  
utilities governed by the  local states).  

• As a rule, there has  not been much coordination  of 
technological and institutional solutions (“designs”).

• N.B. NO “DESIGNS” OF LAYER SCHEMA; 
GRADUAL EVOLUTION, INSTEAD. 



Demand characterization as the key to 
architecture choice and its evolution

• Two qualitatively different demand characterizations/roles 
and their hybrids.

• Demand characterization I--top-down: Demand is 
projected  by the utilities (using macro-economic signals, 
temperature, climate); any deviations of total demand are 
managed as hard-to-predict disturbances. 

• Demand characterization II-bottom-up: Demand is 
characterized by the individual loads (actors), including 
both expectations and bounds on deviations. 

• Hybrid demand characterizations--various degrees of 
multi-layered aggregation of the individual actors 
interacting with the utilities.



Needs for coherence of technology and regulation 
in the electricity sector 

• What it is and what it might be
-The challenge of managing  change (invalid technological and 
regulatory assumptions and complexities, and their relations)
-The evolving architectures over longer-time horizons 
(examples of traditional and evolving system goals)
-Relationships between goals and qualitative (and  
quantifiable)  system characteristics
-Possible architectures (schema)  for internalizing externalities  
(multi-layered architectures) (CMU research)

MAJOR QUESTION: HOW TO CATALYZE THE CHANGE  
(BY MEANS OF TECHNOLOGY AND REGULATION 
DESIGNS) ACCORDING TO WELL-UNDERSTOOD 
OBJECTIVES ?



An example of what it is and what it might 
be: The case of electric power grids

• What it is (August 2003)
Grid failure caused by lack of info/incentives to the 

individual actors for  on-line adjustments prior to 
becoming too late

What it might be: On-line adjustments at the system 
demand side (individual actors), and by the system 
operators to re-route remaining resources w/o losing 
the system as a whole 

STRIKING DIFFERENCES BETWEEN TOP DOWN 
AND DISTRIBUTED/MULTI-LAYERED 
APPROACHES  (TECHNOLOGICAL AND 
REGULATORY)



The challenge of managing change

• Network infrastructures have largely been 
designed  assuming system characteristics that no 
longer hold [1,2]

• Qualitatively new system characteristics and 
objectives  evolving as a result of  regulatory 
changes, technological progress  and unplanned 
component  failures [3]

• No methodologies to manage this evolution 



Examples of several layer schemas and their  
technological, regulatory and economic 

characterization[5,6,7,8]
• 1. Existing paradigm: Centralized, large scale; 

vertically integrated, horizontally distributed. 
• 2. Transitional paradigm:  Aggregation  across 

non-traditional boundaries 
• Likely end state paradigm : Very decentralized, 

large number of small scale  individual actors
(demand side, in particular).



Vertically integrated and hybrid layer schema



Key Features under Regulation

• Operations and planning separate tasks
• Hierarchical operations and control based on 

temporal and spatial separation 
• Generation and transmission planning done 

sequentially and statically
• Average price reflecting total capital and O&M 

(not an actively used signal)
• Customer not an active decision maker
• No direct incentive for right technologies



Traditional objective—regulatory 
benchmark [4]
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Evolving architectures—(partially) 
distributed

• Customers beginning to respond to the market 
forces (considering alternatives--user syndicates, 
customer choice, DG, etc)

• DGs forming portfolios (syndicates)
• Distribution companies (wire owners)  designing 

for synergies, MINIGRIDS
• Manufactures providing equipment /design
• An overall problem: Signals for change weak



Decentralized Paradigm—
Individual actors’-driven  schema



Decision making by the individual actors

• Electricity Supply from System Side
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Re-aggregation—
multi-layered schema 



Ongoing Changes

• Technological (cost-effective small and 
smart power supply, direct  line flow 
control devices (FACTS), Internet, 
customer automation)

• Organizational (competitive power 
generation, electricity markets, customer 
choice, potential for PBR-based 
transmission businesses; open access)
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Functional/Corporate  Unbundling of 
Regulated Utilities—From traditional to 
individual actors-driven layer schemas
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Key Features Under Competition

• Power supply, delivery and consumption separate 
functional and/or corporate entities (own 
objectives)

• Decentralized decision making under uncertainties
• Active use of  price signals (temporal and spatial)
• Potential for valuing right technologies
• Issues with reliability and long term system 

evolution



Individual actors-driven decisions

• Qualitatively Different Mode
– Multi-stage, Decentralized Decisions

• Smart Components and Smart Control
– Supplier
– User
– Transmission 

• Role of Information Technology (IT) 



Non-traditional objectives in the evolving 
architectures for  critical infrastructures 

[5,8,9] –”ilities”
• Differentiated  reliable service at value 
• Sustainable mid-/long-term system 

evolution
• Flexible response to rare events
• HIDDEN OPPORTUNISM



Optimality as a function of layer 
schema

• Paradigm1-Vertically integrated layer schema : 
Despite the popular belief, not optimal long-
term under uncertainties (much more remains 
to be done if dynamic social welfare is to be 
optimized in a coordinated way)

• Paradigm 2—Individual actors-driven layer 
schema: Performance very sensitive to  the 
smartness of switches and aggregation

• Paradigm 3—Multi-layered schema: Feasible, 
near optimal under uncertainties; switching  to  
implement differential  reliability



Layer schema as a complex 
dynamic system

• The need for engineering systems thinking in man-
made infrastructures: Complexities

• Heterogeneous signals defining system architecture
(physical  network driven by economic, regulatory and 
technical actions); evolving architectures

• Wide range of  spatial and temporal inter-dependencies
• Architecture-dependent objectives and uncertainties
• Fundamental irrelevance of root-causes [1]
• Fundamental need for completeness [3]
• Fundamental need for embedded on-line information 

monitoring and use for decision making [2]



Inter-temporal dependencies

• Typical demand profile
• Need to balance power instantaneously
• Could be supplied either on the spot, or through 

long-term contracts
• Depending on how are uncertainties managed, 

very different effects on system-wide performance 
(in particular on “ilities”)

• RESULTS VERY DIFFERENT DEPENDING 
ON HOW IS SYSTEM MANAGED UNDER 
TOPOLOGICAL CHANGES (HIDDEN 
OPPORTUNISM)
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Engineering time-line: Relevance of long-
term for architecture evolution
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Market and Physical Inter-temporal 
Complexities
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Spatial complexities

• Very large networks
• Often no direct control of power flows between 

the sub-networks
• Regulatory requirements for “open access”
• Various levels of granularity: Nodes, zones, 

administrative boundaries (utilities, control areas) 
(HIDDEN OPPORTUNISM)

• Without aggregation it is impossible to “learn”
how to use the network in a bottom-up way (too 
combinatorial)
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Dynamic aggregation 

• Zones—sub-groups of end-users which contribute 
to  the line flow constraint of interest the same 
way  (Zone 1—the largest effect; Zone 2-smaller 
effect, ..)

• Could be used for spatial simplifications; 
extremely relevant for architecture transparency 
and market  liquidity;

• Open questions: Coordination of zones and/or 
control areas to implement “open access” delivery 
[3] (HIDDEN OPPORTUNISM)



Multi-layered architectures for flexible and reliable 
operation over the wide range of system conditions

• Multi-directional signals replacing top-down info 
flows (a means of internalizing externalities)

• Embedded modeling and dynamic decision 
making tools for defining multi-directional info 
flows (translating complex inter-temporal 
dependencies into useful, transparent info; 
Managing spatial complexities through dynamic 
data compression into useful info for various 
layers)

• The paper [9] provides theoretical foundations for 
this as well as a  conceptual rationale for going 
beyond static top-down approach



Catalyzing  architecture evolution—
technological progress 

• Computer tools for making complex data into 
useful info w/o losing the essential information 
(spatial and temporal) for the effective decision 
making 

• Providing info dynamically at various industry 
layers (examples of this in the paper)

• NEED REGULATORY INCENTIVES TO 
SUPPORT THIS (DYNAMIC ZONE OVER 
TIME AND SPACE??)



Qualitatively Different Mode

• Suboptimal operation in static sense
• Potentially optimal long-term, given 

uncertainties (result of distributed stochastic 
optimization); multi-stage decision making

• System operating closer to the acceptable 
operating limits for which it was designed

• Conjecture: IT tools will play critical role in 
facilitating iterative interplay among 
different entities



Some conjectures [9]
• Efficient reliability and flexibility hard to implement in a 

centralized architecture given today’ systems engineering 
knowledge

• If designed right, technical, economic and regulatory 
signals embedded within a network infrastructure play 
interchangeable role in inducing desired “ilities”

• Only under strong simplifying system characteristics 
various architectures lead to the same performance 

• Significant differences in managing uncertainties and 
nonlinearities (non-unique outcomes managed  within a 
multi-layered architecture)-”ilities”

• Multi-directional flows essential for internalizing 
externalities



Architecture characteristics and relations 
to goals

• The three industry structures result in the same  total system 
cost  at equilibrium (theoretical and simulations-results) given 
perfect info

• Critical assumptions: Linear (DC) relations between power 
injections and flows; linear inequality constraints  (LP 
problem)

• Non-linear load flow constraints do NOT lend themselves  to 
the same result (voltage constraints  cannot be handled) (NLP 
problem)

• Topological changes (reliability) cannot be included  (DP 
problem)

• Common assumptions suffice traditional objectives; one must 
be much more careful with “ilities”



Critical open problems
• Design of   complete architectures (including markets) for 

managing  service  at value (including physical reliability-
related risks) over a wide range of time horizons and their 
inter-temporal dependencies;

• The effect of decentralization (coordination needed for 
system-wide efficiency; could be through price incentives, 
and/or engineering rules) [3]

• Tools for re-bundling over time and space to facilitate 
transparent complete architectures

• Education challenges: Defining infrastructures as 
heterogeneous large-scale dynamic systems; re-visiting 
state of art large-scale systems (CMU course 18-777); 
aggressive development of useful computer tools [10]



The key obstacles to having a coherent 
approach in the electricity sector

• Institutional (coexistence of obligation to serve and 
competitive power purchasing);

• Gap between cost-based delivery  and value-based 
generation provision; rule-based system operations and 
planning 

• Highly inflexible regulatory  mechanisms for extracting the 
value of distributed “disruptive” technologies

• WE PLAN TO PROVIDE  SIMULATIONS SHOWING  
OUTCOMES UNDER VARIOUS REGULATORY 
LAYER SCHEMA; TOWARD DESIGNING DECPs



Proposed  enhancements-Toward Dynamic 
Energy Control Protocols (DECPs)

• Demand must bid (short-, mid- and long-term)
• A sequential market for   forward markets to 

meet long-term demand specifications
• Corresponding sequential market for 

managing  network delivery and its valuation
• Natural link between operations and 

investments (currently broken)
• A Stratum Energy Market (SEM) design could 

build on the existing market design with careful 
assessment of the key enhancements [11] 
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Dynamic Protocol --- Distributor Level 
KEY ROLE
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Dynamic Protocol --- Utility Level
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Dynamic Protocol --- Customer Level
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IT-supported Markets 

• Modeling layers at all levels of the evolving 
industry

• Modeling and learning  interactions among the 
layers

• THE KEY QUESTION: WHO IS DESIGNING 
THESE AND ACCORDING TO WHICH 
THEORETICAL/PRAGMATIC 
APPROACHES?? AS OF NOW, IT IS 
LEARNING BY  DOING. 
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